


Solve
$$|2x + 5| - 3 = 7$$

 $|2x + 5| = 10$
 $|2x = 5|$
 $|x = \frac{5}{2}|$
 $|x = \frac{-15}{2}|$
 $|x = \frac{-15}{2}|$

Solve
$$-3|4x-1|+5=-25$$
 Always

I solate the

 $-3|4x-1|=-25-5$ Abs. Value.

 $-3|4x-1|=-30$
 $|4x-1|=\frac{-30}{-3}$ $|4x-1|=10$
 $4x-1=0$ OR $4x-1=-10$
 $4x=11$
 $x=\frac{11}{4}$

Solution Set

 $x=\frac{11}{4}$
 $x=\frac{9}{4}$

Solve
$$|3x + 7| = |x - 3|$$

 $|2x + 7| = |x - 3|$
 $|x = -10|$
 $|x = -10|$
 $|x = -4|$
 $|x = -\frac{4}{3}|$

Solve
$$|3\chi - 6| = |3\chi + 6|$$

 $3\chi - 6 = 3\chi + 6$ OR $3\chi - 6 = -(3\chi + 6)$
 $3\chi - 3\chi = 6 + 6$ $3\chi - 6 = -3\chi - 6$
 $0 = 12$ $3\chi + 3\chi = -6 + 6$
Salse $6\chi = 0$
 $\chi = \frac{6}{6}$ $\chi = 0$
 $\chi = \frac{6}{6}$ $\chi = 0$

Solve
$$|2x+8|-|x+8|=0$$
 Always

 $|2x+8|=|x+8|$
 $|2x+8|=|x+8|$
 $|2x+8|=|x+8|$
 $|2x+8|=-|x+8|$
 $|2x+8|=-|x+8|$

Solve
$$|2x-3| \le 1$$

Solve $|2x-3| = 1$
 $2x-3=1$ OR $2x-3=-1$
 $2x=4$ $2x=2$
 $x=2$ $x=1$
1.N. $[1,2]$ S.B.N. $\{x \mid 1 \le x \le 2\}$

Solve
$$|3x + 4| > 5$$

Solve $|3x + 4| > 5$

Shade

Solve $|3x + 4| = 5$

OR $3x + 4 = -5$
 $3x = 1$
 $x = \frac{1}{3}$
 $x = -9$
 $x = -3$

Graphing

Graphing

T.N. $(-0.3) \cup (\frac{1}{3}, \infty)$

S.B.N.

 $\{x \mid x(-3) \mid 0 \mid x > \frac{1}{3}\}$

Solve
$$|\chi+4|-2<5$$

Always

Isolate the

Abs. Value.

Solve $|\chi+4|=7$
 $\chi+4=7$
 $\chi=3$

Craphing $\chi=11$

S.B.N. $|\chi|=11$
 $|\chi|=11$
 $|\chi|=11$

S.B.N. $|\chi|=11$

Solve
$$-2|x-4|+3 \le -7$$
 $-2|x-4| \le -7-3$
 $-2|x-4| \le -10$
 $-2|x-4| \le -10$
 $-2|x-4| \le -10$

Solve $|x-4|=5$
 $x=9$
 $x=1$
 $x=$

Class QZ 6

Solve
$$|2x-7|-3=0$$
 $|2x-7|=3$
 $|2x-7=3|$
 $|2x-7=3|$
 $|2x=10|$
 $|x=5|$
 $|x=2|$

Solve
$$|2x-1|+3<0$$

$$|2x-1|<-3 \qquad \text{No Solution}$$

Do not do this $\{0\}$

that is a NO! NO!

Solve $-2|x+4|-8<0$ $|x+4|>\frac{8}{-2}$

$$-2|x+4|<8 \qquad |x+4|>-4$$

True

All Reals
$$(-\infty,\infty)$$

R

Solve
$$\frac{1}{2}|\chi-1|-1\geq 2$$
 Always Isolate the $\frac{1}{2}|\chi-1|\geq 3$ Abs. Value.

 $|\chi-1|\geq 6$ Shade outside $|\chi-1|=6$ Use [or]

 $\chi=1=6$ Or $\chi=1=-6$
 $\chi=7$ $\chi=-5$
 $\chi=-5$

Solve
$$-\frac{2}{3}|x+2|+6 \ge 0$$
Always

Isolate the Abs. Value

Multiply by 3

 $-2|x+2| \ge -18$
Divide by -2

Shade between

 $|x+2| \le \frac{-8}{-2}$
 $|x+2| \le 9$
 $|x+2| = 9$
 $|x+3| = 9$
 $|x+3|$

Factor Completey:
$$A^2 - B^2 = (A + B)(A - B)$$
1)
$$4x - 100 = 4(x - 25)$$

$$A^2 + B^2 = Prime$$

a)
$$4\chi^{2} - 100 = 4\left(\chi^{2} - 25\right) = 4\left(\chi^{2} - 5^{2}\right)$$

$$\frac{4(\chi + 5)(\chi - 5)}{4(\chi + 5)(\chi - 5)}$$

a)
$$4x^{2} - 100 = 4(x^{2} - 25) = 4(x^{2} - 5^{2})$$

$$= 4(x^{3} - 32) = 4(x^{3} - 2^{3}) + 4(x - 2)(x^{2} + 2x + 4)$$

$$= 4(x^{3} - 8) = 4(x^{3} - 2^{3}) + 4(x - 2)(x^{2} + 2x + 4)$$

$$= 4(x^{3} - 8) = (4 - 8)(4^{2} + 48 + 8^{2})$$

$$= 4(x^{3} - 8) = (4 + 8)(4^{2} - 48 + 8^{2})$$

$$= 4(x^{3} - 8) = 4(x^{3} - 2^{3}) + 4(x^{2} - 2^{3}) + 4(x^{$$

tactor Completely!

1)
$$\chi^2 - 100 = \chi^2 - 10^2 = (\chi + 10)(\chi - 10)$$

2)
$$\chi^2 + 81 = \chi^2 + 9^2 = Prime$$

3)
$$\chi^3 + 64 = \chi^3 + 4^3 = (\chi + 4)(\chi^2 - 4\chi + 16)$$

4) $\chi^3 - 125 = \chi^3 - 5^3 = (\chi - 5)(\chi^2 + 5\chi + 25)$

4)
$$\chi^3 - 125 = \chi^3 - 5^3 = (\chi - 5)(\chi^2 + 5\chi + 25)$$

Zero - Factor Property:

Zero - Product Rule!

TS
$$\Theta \cdot B = 0$$
, then $A = 0$ OR $B = 0$

(Maybe both)

Solve $(x=3)(x+8) = 0$
 $x=3=0$ OR $x+8=0$
 $x=3$
 $x=3=0$

Solve
$$(\chi-5)(\chi+5)(\chi-10)=0$$

Is RHS = 0? Yes

=> Use Zero-Product rule

Is LHS Factored? Yes to Solve

 $\chi-5=0$ $\chi+5=0$ $\chi-10=0$
 $\chi=5$ $\chi=-5$ $\chi=10$

Use Zero-Sactor property to Solve
$$(2\chi - 5)(3\chi + 4) = 0.$$

$$2\chi - 5 = 0$$

$$\chi = \frac{5}{2}$$

$$\chi = \frac{4}{3}$$

$$\chi = \frac{4}{3}$$

Solve
$$\frac{1}{3}x - \frac{1}{2} = \frac{5}{6}$$

Use LCD to clear Stractions

LCD=6

 $26 - \frac{3}{5}x - \frac{3}{6} = \frac{5}{6}$
 $2x - 3 = 5$
 $2x = 8$
 $x = 4$

Solve
$$\frac{2}{x-3} - \frac{1}{x+2} = \frac{5}{x^2-x-6}$$

LCD= $(x-3)(x+2)$

(x-3)(x+2) $\cdot \frac{2}{x-3} - (x-3)(x+2) \cdot \frac{1}{x+2} = \frac{5}{x^2+6}$
 $2(x+2) - 1(x-3) = 5 \quad x+7 = 5$
 $2x+4 - x + 3 = 5 \quad x = -2$

No Solution

-2 makes at least one of the denominators Zevo.

Class QZ 7

Factor Completely

1)
$$\chi^2 - \chi - 6 = (\chi - 3)(\chi + 2)$$

2)
$$\chi^3 + 1000 = \chi^3 + 10^3 = (\chi + 10)(\chi^2 - 10\chi + 100)$$

3)
$$3\chi^2 - 75\chi = 3\chi(\chi - 25)$$